国際医薬品開発研究ジャーナル

  • ISSN: 0975-9344
  • ジャーナル h-index: 44
  • 雑誌引用スコア: 59.93
  • ジャーナルのインパクトファクター: 48.80
インデックス付き
  • Genamics JournalSeek
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • シマゴ
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • OCLC-WorldCat
  • パブロン
  • ミアル
  • 大学補助金委員会
  • ユーロパブ
  • Google スカラー
  • シェルパ・ロメオ
  • 秘密検索エンジン研究所
  • リサーチゲート
このページをシェアする

抽象的な

Extraction of Drug-Drug Interactions Using Convolutional Neural Networks

Puneet Souda*

Drug-drug interaction (DDI) extraction has long been a popular relation extraction task in natural language processing (NLP). Modern support vector machines (SVM) with a high number of manually set features are the foundation of most DDI extraction methods. Convolutional neural networks (CNN), a reliable machine learning technique that nearly never requires manually generated features, have recently shown significant promise for a variety of NLP tasks. CNN should be used for DDI extraction, which has never been looked at. A CNN-based technique for DDI extraction was put forth. CNN is a good option for DDI extraction, as shown by experiments done on the 2013 DDI Extraction challenge corpus. The CNN-based DDI extraction approach outperforms the currently highest performing method by 69.75%, achieving a score of 69.75%.

Keywords

Drug-drug interaction (DDI); Convolutional neural networks (CNN); Support vector machines (SVM); Extraction

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません