トランスレーショナル生物医学

  • ISSN: 2172-0479
  • ジャーナル h-index: 16
  • 雑誌引用スコア: 5.91
  • ジャーナルのインパクトファクター: 3.66
インデックス付き
  • Jゲートを開く
  • Genamics JournalSeek
  • ジャーナル目次
  • 研究聖書
  • グローバル インパクト ファクター (GIF)
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • シマゴ
  • 電子ジャーナルライブラリ
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • OCLC-WorldCat
  • プロクエスト召喚
  • パブロン
  • ミアル
  • 大学補助金委員会
  • ジュネーブ医学教育研究財団
  • Google スカラー
  • シェルパ・ロメオ
  • 秘密検索エンジン研究所
  • リサーチゲート
このページをシェアする

抽象的な

Belongingness Clustering and Region Labeling Based Pixel Classification for Automatic Left Ventricle Segmentation in Cardiac MRI Images

Ayush Goyal, Vinayak Ray

This paper presents a fully automatic rapid method for delineation of the left ventricle (LV) from MRI images of heart patients for the critical diagnosis of myocardial function as an evaluation of heart disease. In this research, completely automated image segmentation is performed using a belongingness clustering and region labeling based pixel classification approach. This new combined region labeling and belongingness clustering technique removes the need for manual initialization, which is required in deformable methods. The left ventricle is segmented automatically in all slices in the multi-frame MRI data of the whole cardiac cycle rapidly in 0.67 seconds for a single frame on average. Manual segmentation of the left ventricle in the multi-frame cardiac MRI image data by experts was used as a standard to test the accuracy of the automated left ventricle segmentation method. Medical parameters like End Systolic Volume (ESV), End Diastolic Volume (EDV) and Ejection Fraction (EF) were calculated both automatically and manually and compared for accuracy.

免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません